login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073391
Fourth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
3
1, 10, 70, 400, 2020, 9352, 40600, 167680, 665440, 2555840, 9551936, 34880000, 124853120, 439228160, 1521839360, 5202292736, 17571249920, 58712184320, 194280061440, 637228462080, 2073332481024, 6696470231040
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-30,0,120,-48,-240,0,240,160,32).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073390(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, 4)*binomial(n-k, k)*2^(n-k).
a(n) = (2*(419 + 326*n + 79*n^2 + 6*n^3)*(n+1)*U(n+1) + (458 + 421*n + 112*n^2 + 9*n^3)*(n+2)*U(n))/(2^5*3^4), with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^5.
MATHEMATICA
CoefficientList[Series[1/(1-2*x-2*x^2)^5, {x, 0, 40}], x] (* G. C. Greubel, Oct 04 2022 *)
PROG
(GAP) List([0..25], n->2^n*Sum([0..Int(n/2)], k->Binomial(n-k+4, 4)*Binomial(n-k, k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^5 )); // G. C. Greubel, Oct 04 2022
(SageMath)
def A073391_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^5 ).list()
A073391_list(40) # G. C. Greubel, Oct 04 2022
CROSSREFS
Fifth (m=4) column of triangle A073387.
Sequence in context: A271040 A005567 A174434 * A002802 A101029 A375921
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved