OFFSET
0,2
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (10,-30,0,120,-48,-240,0,240,160,32).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, 4)*binomial(n-k, k)*2^(n-k).
a(n) = (2*(419 + 326*n + 79*n^2 + 6*n^3)*(n+1)*U(n+1) + (458 + 421*n + 112*n^2 + 9*n^3)*(n+2)*U(n))/(2^5*3^4), with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^5.
MATHEMATICA
CoefficientList[Series[1/(1-2*x-2*x^2)^5, {x, 0, 40}], x] (* G. C. Greubel, Oct 04 2022 *)
PROG
(GAP) List([0..25], n->2^n*Sum([0..Int(n/2)], k->Binomial(n-k+4, 4)*Binomial(n-k, k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^5 )); // G. C. Greubel, Oct 04 2022
(SageMath)
def A073391_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^5 ).list()
A073391_list(40) # G. C. Greubel, Oct 04 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved