login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
3

%I #28 Oct 05 2022 03:25:11

%S 1,12,96,616,3444,17472,82432,367488,1565280,6421376,25525248,

%T 98773248,373450112,1383674880,5036089344,18041821184,63727070976,

%U 222249968640,766234140672,2614196680704,8834194123776

%N Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.

%H Muniru A Asiru, <a href="/A073392/b073392.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-48,40,180,-288,-384,576,720,-320,-768,-384,-64).

%F a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073391(k).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+5, 5)*binomial(n-k, k)*2^(n-k).

%F a(n) = (n+4)*(n+8)*((19*n^2 + 158*n + 275)*(n+1)*U(n+1) + 2*(7*n^2 + 52*n + 65)*(n+2)*U(n))/(2^6*3^4*5), with U(n) = A002605(n), n >= 0.

%F G.f.: 1/(1-2*x*(1+x))^6.

%e x^6 + 12*x^7 + 96*x^8 + 616*x^9 + 3444*x^10 + ... + 222249968640*x^23 + 766234140672*x^24 + 2614196680704*x^25 + 8834194123776*x^26 + ... - _Zerinvary Lajos_, Jun 03 2009

%t CoefficientList[Series[1/(1-2*x*(1+x))^6, {x,0,30}],x] (* _Harvey P. Dale_, May 12 2018 *)

%o (Sage) taylor( 1/(1-2*x-2*x^2)^6, x, 0, 30).list() # _Zerinvary Lajos_, Jun 03 2009; modified by _G. C. Greubel_, Oct 04 2022

%o (GAP) List([0..30], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+5,5)*Binomial(n-k,k)*(1/2)^k)); # _Muniru A Asiru_, Jun 12 2018

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^6 )); // _G. C. Greubel_, Oct 04 2022

%Y Sixth (m=5) column of triangle A073387.

%Y Cf. A002605, A073391.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 02 2002