login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125693
Riordan array ((1-x)/(1-3*x), x*(1-x)/(1-3*x)).
2
1, 2, 1, 6, 4, 1, 18, 16, 6, 1, 54, 60, 30, 8, 1, 162, 216, 134, 48, 10, 1, 486, 756, 558, 248, 70, 12, 1, 1458, 2592, 2214, 1168, 410, 96, 14, 1, 4374, 8748, 8478, 5160, 2150, 628, 126, 16, 1, 13122, 29160, 31590, 21744, 10442, 3624, 910, 160, 18, 1
OFFSET
0,2
COMMENTS
Row sums are A001835(n+1). Diagonal sums are A030186. Inverse is A125694. Equal to product of A007318 and A073370.
FORMULA
Number triangle T(n,k) = Sum_{j=0..k+1} C(k+1,j)*C(n-j,n-k-j)* (-1)^j * 3^(n-k-j).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k>n or if k<n. - Philippe Deléham, Jan 08 2013
EXAMPLE
Triangle begins
1;
2, 1;
6, 4, 1;
18, 16, 6, 1;
54, 60, 30, 8, 1;
162, 216, 134, 48, 10, 1;
MAPLE
seq(seq( add( (-1)^j*3^(n-k-j)*binomial(k+1, j)*binomial(n-j, n-k-j), j=0..n), k=0..n), n=0..10); # G. C. Greubel, Oct 28 2019
MATHEMATICA
T[0, 0]=1; T[1, 0]=2; T[1, 1]=1; T[n_, k_]/; 0<=k<=n:= T[n, k]= 3T[n-1, k] + T[n-1, k-1] - T[n-2, k-1]; T[_, _]=0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
T[n_, k_]:= Sum[(-1)^j*3^(n-k-j)*Binomial[k+1, j]*Binomial[n-j, n-k-j], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, n, (-1)^j*3^(n-k-j)*binomial(k+1, j)*binomial(n-j, n-k-j));
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 28 2019
(Magma) T:= func< n, k | &+[(-1)^j*3^(n-k-j)*Binomial(k+1, j)*Binomial(n-j, n-k-j): j in [0..n]] >;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 28 2019
(Sage) [[sum( (-1)^j*3^(n-k-j)*binomial(k+1, j)*binomial(n-j, n-k-j) for j in (0..n) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 28 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j->
(-1)^j*3^(n-k-j)*Binomial(k+1, j)*Binomial(n-j, n-k-j) )))); # G. C. Greubel, Oct 28 2019
CROSSREFS
Sequence in context: A118040 A073387 A259099 * A094527 A054335 A110681
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, Nov 30 2006
STATUS
approved