login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073397
Eighth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.
3
1, 18, 198, 1680, 12060, 76824, 446952, 2420352, 12363120, 60151520, 280833696, 1265442048, 5528697408, 23507763840, 97575960960, 396398370816, 1579498956288, 6184543546368, 23833455191040, 90522348871680, 339263015528448, 1255995653197824, 4597442198728704
OFFSET
0,2
COMMENTS
For a(n) in terms of U(n+1) and U(n), with U(n) = A002605(n), see A073387 and the row polynomials of triangles A073405 and A073406.
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-126,384,-144,-2016,3360,4608,-12384,-8512, 24768,18432,-26880,-32256,4608,24576,16128,4608,512).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073394(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+8, 8)*binomial(n-k, k)*2^(n-k).
G.f.: 1/(1-2*x*(1+x))^9.
MATHEMATICA
CoefficientList[Series[1/(1-2*x-2*x^2)^9, {x, 0, 30}], x] (* G. C. Greubel, Oct 06 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^9 )); // G. C. Greubel, Oct 06 2022
(SageMath)
def A073397_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^9 ).list()
A073397_list(30) # G. C. Greubel, Oct 06 2022
CROSSREFS
Ninth (m=8) column of triangle A073387.
Sequence in context: A264356 A034727 A060532 * A020920 A083812 A086573
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved