Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 04 2022 08:38:32
%S 1,4,16,56,188,608,1920,5952,18192,54976,164608,489088,1443776,
%T 4238336,12382208,36022272,104407296,301618176,868765696,2495715328,
%U 7152286720,20452548608,58369409024
%N Convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
%H Muniru A Asiru, <a href="/A073388/b073388.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-8,-4).
%F a(n) = Sum_{k=0..n} b(k)*b(n-k), with b(k) = A002605(k).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, 1)*binomial(n-k, k)*2^(n-k).
%F a(n) = ((n+1)*U(n+1) + 2*(n+2)*U(n))/6, with U(n) = A002605(n), n >= 0.
%F G.f.: 1/(1-2*x*(1+x))^2.
%F a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)2^(n-k+1). - _Paul Barry_, Oct 15 2004
%t CoefficientList[Series[1/(1-2*x-2*x^2)^2, {x,0,40}], x] (* _G. C. Greubel_, Oct 03 2022 *)
%o (Sage) taylor( 1/(1-2*x-2*x^2)^2, x, 0, 24).list() # _Zerinvary Lajos_, Jun 03 2009; modified by _G. C. Greubel_, Oct 03 2022
%o (GAP) List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+1,1)*Binomial(n-k,k)*(1/2)^k)); # _Muniru A Asiru_, Jun 12 2018
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^2 )); // _G. C. Greubel_, Oct 03 2022
%Y Second (m=1) column of triangle A073387.
%Y Cf. A002605.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 02 2002