login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268447
Number of North-East lattice paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly four times.
0
1, 18, 189, 1518, 10350, 63180, 356265, 1893294, 9612108, 47071640, 223926516, 1040310648, 4739192952, 21238169904, 93865125915, 409972529754, 1772528290407, 7596549816030, 32308782859535, 136496564854650, 573285572389530, 2395339717603140, 9962435643667605
OFFSET
8,2
COMMENTS
It is related to paired pattern P_3 in Section 3.3 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: (2*(-1 + f(x) + 2*x)^4)/(1 + f(x) - 2*x)^5, where f(x) = sqrt(1 - 4*x).
Conjecture: -(n+10)*(n-8)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
Rest[Rest[Rest[Rest[Rest[Rest[Rest[Rest[CoefficientList[Series[(2 (-1 + Sqrt[1 - 4 x] + 2 x)^4) / (1 + Sqrt[1 - 4 x] - 2 x)^5, {x, 0, 33}], x]]]]]]]]] (* Vincenzo Librandi, Feb 06 2016 *)
PROG
(PARI) x='x+O('x^100); Vec((2*(-1 + (1 - 4*x)^(1/2) + 2*x)^4)/(1 + (1 - 4*x)^(1/2) - 2*x)^5) \\ Altug Alkan, Feb 04 2016
CROSSREFS
Cf. A268446.
Sequence in context: A073385 A036219 A022646 * A259163 A004314 A338099
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 04 2016
STATUS
approved