login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of North-East lattice paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly four times.
0

%I #12 Jun 07 2016 13:52:40

%S 1,18,189,1518,10350,63180,356265,1893294,9612108,47071640,223926516,

%T 1040310648,4739192952,21238169904,93865125915,409972529754,

%U 1772528290407,7596549816030,32308782859535,136496564854650,573285572389530,2395339717603140,9962435643667605

%N Number of North-East lattice paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly four times.

%C It is related to paired pattern P_3 in Section 3.3 in Pan and Remmel's link.

%H Ran Pan, Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.

%F G.f.: (2*(-1 + f(x) + 2*x)^4)/(1 + f(x) - 2*x)^5, where f(x) = sqrt(1 - 4*x).

%F Conjecture: -(n+10)*(n-8)*a(n) +2*n*(2*n+1)*a(n-1)=0. - _R. J. Mathar_, Jun 07 2016

%t Rest[Rest[Rest[Rest[Rest[Rest[Rest[Rest[CoefficientList[Series[(2 (-1 + Sqrt[1 - 4 x] + 2 x)^4) / (1 + Sqrt[1 - 4 x] - 2 x)^5, {x, 0, 33}], x]]]]]]]]] (* _Vincenzo Librandi_, Feb 06 2016 *)

%o (PARI) x='x+O('x^100); Vec((2*(-1 + (1 - 4*x)^(1/2) + 2*x)^4)/(1 + (1 - 4*x)^(1/2) - 2*x)^5) \\ _Altug Alkan_, Feb 04 2016

%Y Cf. A268446.

%K nonn

%O 8,2

%A _Ran Pan_, Feb 04 2016