OFFSET
0,1
COMMENTS
The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = ( p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058402(k,m).
LINKS
FORMULA
Recursion for row polynomials defined in the comments: see A058402.
EXAMPLE
k=2: P2(n)=((22+8*n)*(n+1)*2*P0(n+1)+(20+8*n)*(n+2)*P0(n))/128, cf. A054457.
2; 20,8; 360,288,48; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Dec 11 2000
EXTENSIONS
Link and cross-references added by Wolfdieter Lang, Jul 31 2002
STATUS
approved