The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083297 a(n) = (4*4^n + (-6)^n)/5. 3
 1, 2, 20, 8, 464, -736, 12608, -42880, 388352, -1805824, 12932096, -69203968, 448778240, -2558451712, 15887581184, -93178003456, 567657955328, -3371587993600, 20366966915072, -121652045676544, 732111297314816, -4383871690866688, 26338414517288960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A083296. LINKS Iain Fox, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi) Index entries for linear recurrences with constant coefficients, signature (-2,24). FORMULA a(n) = (4*4^n + (-6)^n)/5. G.f.: (1+4*x)/((1-4*x)*(1+6*x)). E.g.f.: (4*exp(4*x) + exp(-6*x))/5. a(n) = -2*a(n-1) + 24*a(n-2). - Iain Fox, Oct 31 2018 MAPLE seq(coeff(series((1+4*x)/((1-4*x)*(1+6*x)), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 31 2018 MATHEMATICA CoefficientList[Series[(1 + 4 x)/((1 - 4 x) (1 + 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Oct 31 2018 *) CoefficientList[Series[(4*Exp[4*x] + Exp[-6*x])/5, {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Nov 01 2018 *) LinearRecurrence[{-2, 24}, {1, 2}, 30] (* G. C. Greubel, Nov 07 2018 *) PROG (Magma) [(4*4^n+(-6)^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011 (PARI) first(n) = Vec((1+4*x)/((1-4*x)*(1+6*x)) + O(x^n)) \\ Iain Fox, Oct 31 2018 (PARI) a(n) = (4*4^n + (-6)^n)/5 \\ Iain Fox, Oct 31 2018 (GAP) List([0..25], n->(4*4^n+(-6)^n)/5); # Muniru A Asiru, Oct 31 2018 CROSSREFS Cf. A083222. Sequence in context: A076495 A308387 A058403 * A343927 A221921 A012739 Adjacent sequences: A083294 A083295 A083296 * A083298 A083299 A083300 KEYWORD easy,sign AUTHOR Paul Barry, Apr 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 00:22 EDT 2024. Contains 371850 sequences. (Running on oeis4.)