login
A036220
Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).
14
1, 21, 252, 2268, 17010, 112266, 673596, 3752892, 19702683, 98513415, 472864392, 2192371272, 9865670724, 43257171636, 185387878440, 778629089448, 3211844993973, 13036312034361, 52145248137444, 205836505805700, 802762372642230, 3096369151620030
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,-189,945,-2835,5103,-5103,2187).
FORMULA
a(n) = 3^n*binomial(n+6, 6).
a(n) = A027465(n+7,7).
G.f.: 1/(1-3*x)^7.
E.g.f.: (1/80)*(80 + 1440*x + 5400*x^2 + 7200*x^3 + 4050*x^4 + 972*x^5 + 81*x^6)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1173/5 - 576*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 18432*log(4/3) - 26508/5. (End)
MAPLE
seq(3^n*binomial(n+6, 6), n=0..20); # Zerinvary Lajos, Jun 16 2008
MATHEMATICA
Table[3^n*Binomial[n+6, 6], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
PROG
(Sage) [3^n*binomial(n+6, 6) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
(Magma) [3^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
CROSSREFS
Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), this sequence (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).
Sequence in context: A165108 A282923 A023019 * A022649 A165094 A365849
KEYWORD
easy,nonn
STATUS
approved