login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
12

%I #29 Sep 22 2022 03:58:30

%S 1,27,405,4455,40095,312741,2189187,14073345,84440070,478493730,

%T 2583866142,13389124554,66945622770,324428787270,1529449997130,

%U 7035469986798,31659614940591,139674771796725,605257344452475

%N Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).

%C With a different offset, number of n-permutations (n>=8) of 4 objects: u, v, z, x with repetition allowed, containing exactly eight (8) u's. Example: a(1)=27 because we have uuuuuuuuv, uuuuuuuuz, uuuuuuuux, uuuuuuuvu, uuuuuuuzu, uuuuuuuxu, uuuuuuvuu, uuuuuuzuu, uuuuuuxuu, uuuuuvuuu, uuuuuzuuu, uuuuuxuuu, uuuuvuuuu, uuuuzuuuu, uuuuxuuuu, uuuvuuuuu, uuuzuuuuu, uuuxuuuuu, uuvuuuuuu, uuzuuuuuu, uuxuuuuuu, uvuuuuuuu, uzuuuuuuu, uxuuuuuuu, vuuuuuuuu, zuuuuuuuu, xuuuuuuuu. - _Zerinvary Lajos_, Jun 23 2008

%H Vincenzo Librandi, <a href="/A036222/b036222.txt">Table of n, a(n) for n = 0..400</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (27,-324,2268,-10206,30618,-61236,78732,-59049,19683).

%F a(n) = 3^n*binomial(n+8, 8).

%F a(n) = A027465(n+9, 9).

%F G.f.: 1/(1-3*x)^9.

%F a(0)=1, a(1)=27, a(2)=405, a(3)=4455, a(4)=40095, a(5)=312741, a(6)=2189187, a(7)=14073345, a(8)=84440070, a(n) = 27*a(n-1) - 324*a(n-2) + 2268*a(n-3) - 10206*a(n-4) + 30618*a(n-5) - 61236*a(n-6) + 78732*a(n-7) - 59049*a(n-8) + 19683*a(n-9). - _Harvey P. Dale_, Jan 07 2016

%F From _Amiram Eldar_, Sep 22 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 43632/35 - 3072*log(3/2).

%F Sum_{n>=0} (-1)^n/a(n) = 393216*log(4/3) - 3959208/35. (End)

%p seq(3^n*binomial(n+8,8), n=0..18); # _Zerinvary Lajos_, Jun 23 2008

%t Table[3^n*Binomial[n+8, 8], {n, 0, 20}] (* _Zerinvary Lajos_, Jan 31 2010 *)

%t CoefficientList[Series[1/(1-3x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{27,-324, 2268,-10206,30618,-61236,78732,-59049,19683}, {1,27,405,4455,40095,312741, 2189187,14073345,84440070}, 30] (* _Harvey P. Dale_, Jan 07 2016 *)

%o (Sage) [3^n*binomial(n+8, 8) for n in range(30)] # _Zerinvary Lajos_, Mar 13 2009

%o (Magma) [3^n*Binomial(n+8, 8): n in [0..30]]; // _Vincenzo Librandi_, Oct 15 2011

%Y Cf. A027465.

%Y Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), this sequence (m=8), A036223 (m=9), A172362 (m=10).

%K easy,nonn

%O 0,2

%A _Wolfdieter Lang_