login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326606 G.f.: [ Sum_{n>=0} (2*n + 1) * x^n * (9 - x^n)^n ]^(1/3). 2
1, 9, 53, 504, 3479, 34362, 248799, 2483091, 18383088, 185472450, 1378756330, 14142832704, 104308903182, 1093968797580, 7930694023345, 85563977678775, 604256899812240, 6755825768907204, 46021002487605408, 538061313239561853, 3494583984824812425, 43217684276354830458, 263780496112409697816, 3501503522404393600863, 19716335477199319610336 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
G.f. is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n).
The cube of the g.f., A(x)^3, is congruent modulo 9 to Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)), and equals the g.f. of A326605.
First negative term is a(38) = -19995469991861952392493964610982114.
LINKS
FORMULA
G.f.: [ Sum_{n>=0} (2*n+1) * x^n * (9 - x^n)^n ]^(1/3).
G.f.: [ Sum_{n>=0} (-1)^n * (2*n+1 + 9*x^(n+1)) * x^(n*(n+1)) / (1 - 9*x^(n+1))^(n+2) ]^(1/3).
EXAMPLE
G.f. A(x) = 1 + 9*x + 53*x^2 + 504*x^3 + 3479*x^4 + 34362*x^5 + 248799*x^6 + 2483091*x^7 + 18383088*x^8 + 185472450*x^9 + 1378756330*x^10 + ...
such that
A(x)^3 = 1 + 3*x*(9-x) + 5*x^2*(9-x^2)^2 + 7*x^3*(9-x^3)^3 + 9*x^4*(9-x^4)^4 + 11*x^5*(9-x^5)^5 + 13*x^6*(9-x^6)^6 + 15*x^7*(9-x^7)^7 + ...
Also,
A(x)^3 = (1 + 9*x)/(1 - 9*x)^2 - (3 + 9*x^2)*x^2/(1 - 9*x^2)^3 + (5 + 9*x^3)*x^6/(1 - 9*x^3)^4 - (7 + 9*x^4)*x^12/(1 - 9*x^4)^5 + (9 + 9*x^5)*x^20/(1 - 9*x^5)^6 - (11 + 9*x^6)*x^30/(1 - 9*x^6)^7 + (13 + 9*x^7)*x^42/(1 - 9*x^7)^8 + ...
RELATED SERIES.
G.f. A(x) is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n),
A(x) (mod 3) = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + x^44 + x^52 - x^70 - x^80 + x^102 + x^114 - x^140 - x^154 + x^184 + x^200 + ...
The cube of the g.f. A(x) begins
A(x)^3 = 1 + 27*x + 402*x^2 + 5103*x^3 + 58959*x^4 + 649539*x^5 + 6907037*x^6 + 71744535*x^7 + 731768013*x^8 + 7360989480*x^9 + ... + A326605(n)*x^n + ...
which is congruent modulo 9 to
A(x)^3 (mod 9) = 1 - 3*x^2 + 5*x^6 - 7*x^12 + 9*x^20 - 11*x^30 + 13*x^42 - 15*x^56 + 17*x^72 - 19*x^90 + 21*x^110 + ... + (-1)^n*(2*n+1)*x^(n*(n+1)) + ...
PROG
(PARI) /* By definition */
{a(n) = my(A = sum(m=0, n, (2*m + 1) * x^m * (9 - x^m + x*O(x^n))^m)^(1/3) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Accelerated series */
{a(n) = my(A = sum(m=0, sqrtint(n+1), (-1)^m * (2*m + 1 + 9*x^(m+1))* x^(m*(m+1)) / (1 - 9*x^(m+1) + x*O(x^n))^(m+2) )^(1/3) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A326605.
Sequence in context: A001688 A144040 A336184 * A052108 A209453 A259316
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 08 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 07:10 EST 2023. Contains 367630 sequences. (Running on oeis4.)