The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326604 G.f. A(x) satisfies x / Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3. 1
 1, 1, 3, 21, 231, 3333, 58167, 1175877, 26827623, 679078677, 18844334727, 568229240901, 18491559492999, 645850960844469, 24099045218945031, 956889503377128261, 40291822946545245927, 1793614919867776690389, 84177429562216608349959, 4154548653801498090246597, 215137302566817565660007367, 11664210072689092804458508533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(k) = 6 (mod 9) when k = A191107(n) for n > 1 (conjecture). a(n) = 3*A249933(n) for n > 1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA G.f. A(x) satisfies: (1) A( 3*x/(2*A(x) + 1+x) ) = (2*A(x) + 1+x)/3. (2) A(x) = (1 + 2*A(x*A(x))) / (3-x). (3) A(x) = 1 + Sum_{n>=1} G^n(x) * 2^(n-1)/3^n where G(x) = x*A(x) and G^n(x) = G^{n-1}(x*A(x)) denotes iteration with G^0(x) = x. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 231*x^4 + 3333*x^5 + 58167*x^6 + 1175877*x^7 + 26827623*x^8 + 679078677*x^9 + 18844334727*x^10 +... such that x/Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3 = 1 + x + 2*x^2 + 14*x^3 + 154*x^4 + 2222*x^5 + 38778*x^6 + 783918*x^7 + 17885082*x^8 + 452719118*x^9 + ... ITERATIONS OF x*A(x). Let G(x) = x*A(x), then A(x) = 1 + G(x)/3 + G(G(x))*2/3^2 + G(G(G(x)))*2^2/3^3 + G(G(G(G(x))))*2^3/3^4 + G(G(G(G(G(x)))))*2^4/3^5 +... The table of coefficients in the iterations of x*A(x) begin: [1, 1, 3, 21, 231, 3333, 58167, 1175877, 26827623, ...]; [1, 2, 8, 58, 630, 8958, 154530, 3096330, 70161318, ...]; [1, 3, 15, 117, 1285, 18167, 310735, 6177745, 139076385, ...]; [1, 4, 24, 204, 2308, 32800, 559124, 11053668, 247451528, ...]; [1, 5, 35, 325, 3835, 55365, 946623, 18671961, 416326935, ...]; [1, 6, 48, 486, 6026, 89158, 1539350, 30423134, 677231222, ...]; [1, 7, 63, 693, 9065, 138383, 2427943, 48304893, 1076756889, ...]; [1, 8, 80, 952, 13160, 208272, 3733608, 75127944, 1682704256, ...]; [1, 9, 99, 1269, 18543, 305205, 5614887, 114768093, 2592154167, ...]; ... in which the following sum along column k equals a(k+1): a(2) = 3 = 1/3 + 2*2/9 + 3*4/27 + 4*8/81 + 5*16/243 + 6*32/729 +... a(3) = 21 = 3/3 + 8*2/9 + 15*4/27 + 24*8/81 + 35*16/243 + 48*32/729 + ... a(4) = 231 = 21/3 + 58*2/9 + 117*4/27 + 204*8/81 + 325*16/243 + 486*32/729 +... a(5) = 3333 = 231*2/3 + 630*2/9 + 1285*4/27 + 2308*8/81 + 3835*16/243 + 6026*32/729 +... MATHEMATICA nmax = 21; sol = {a[0] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + 2 A[x A[x] + O[x]^(n+1)])/(3-x), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}]; sol /. Rule -> Set; a /@ Range[0, nmax] (* Jean-François Alcover, Nov 03 2019 *) PROG (PARI) /* Prints N terms using x/Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3 */ N = 30; {A=[1, 1]; for(i=1, N, A = concat(A, -3*Vec(x/serreverse(x*Ser(concat(A, 0))))[#A+1]); print1(i, ", ") ); A} CROSSREFS Cf. A120956, A249933. Sequence in context: A332708 A097329 A119097 * A008545 A005373 A078586 Adjacent sequences: A326601 A326602 A326603 * A326605 A326606 A326607 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)