login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326603
E.g.f.: Sum_{n>=0} (x^(2*n-1) + 1)^n * x^n * exp(-x^(2*n+1)) / n!, an even function.
2
1, 4, -22, 2, 60482, -4838398, 119750402, 7264857602, -348713164798, 4268249137152002, -2020660279013375998, 327387513566969856002, -17234677825923317759998, 20004536762232422400002, 12702000644400049997414400002, -4420880996869850977271807999998, 55184528880536814259678111334400002, -98410947805609541237532965260492799998, 61998887798316869577999908025139200000002
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where
(1) A(x) = Sum_{n>=0} (x^(2*n-1) + 1)^n * x^n * exp(-x^(2*n+1)) / n!,
(2) A(x) = Sum_{n>=0} (x^(2*n-1) - 1)^n * x^n * exp(+x^(2*n+1)) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x^2/2! - 22*x^4/4! + 2*x^6/6! + 60482*x^8/8! - 4838398*x^10/10! + 119750402*x^12/12! + 7264857602*x^14/14! - 348713164798*x^16/16! + 4268249137152002*x^18/18! + ...
such that
A(x) = exp(-x) + (1 + x)*x*exp(-x^3) + (1 + x^3)^2*x^2*exp(-x^5)/2! + (1 + x^5)^3*x^3*exp(-x^7)/3! + (1 + x^7)^4*x^4*exp(-x^9)/4! + (1 + x^9)^5*x^5*exp(-x^11)/5! + (1 + x^11)^6*x^6*exp(-x^13)/6! + ...
also
A(x) = exp(+x) - (1 - x)*x*exp(+x^3) + (1 - x^3)^2*x^2*exp(+x^5)/2! - (1 - x^5)^3*x^3*exp(+x^7)/3! + (1 - x^7)^4*x^4*exp(+x^9)/4! - (1 - x^9)^5*x^5*exp(+x^11)/5! + (1 - x^11)^6*x^6*exp(+x^13)/6! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, 2*n+1, (x^(2*m-1) + 1 +O(x^(2*n+2)) )^m * x^m * exp(-x^(2*m+1) +O(x^(2*n+2))) / m! ));
(2*n)!*polcoeff(A, 2*n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, 2*n+1, (x^(2*m-1) - 1 +O(x^(2*n+2)) )^m * x^m * exp(+x^(2*m+1) +O(x^(2*n+2))) / m! ));
(2*n)!*polcoeff(A, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A326602.
Sequence in context: A000868 A000875 A094046 * A335697 A121006 A268924
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 08 2019
STATUS
approved