login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094046
Triangle read by rows: T(n,k) (n>=2; 0<=k<=floor(n/2)-1) is the number of noncrossing connected graphs on n nodes on a circle, having exactly k four-sided faces.
1
1, 4, 22, 1, 141, 15, 988, 171, 3, 7337, 1778, 77, 56749, 17758, 1300, 12, 452332, 173826, 18315, 435, 3689697, 1683055, 233695, 9680, 55, 30652931, 16195344, 2804637, 171226, 2574, 258465558, 155280489, 32306742, 2647580, 70980, 273
OFFSET
2,2
COMMENTS
T(2n,n-1) = A001764(n-1); T(n,0) = A045744(n).
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math. 204 (1999), 203-229.
FORMULA
T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(4n-4-k-i, n-2k-2-3i), i=0..floor((n-2k-2)/3))/(n-1).
G.f. G=G(t, z) satisfies: G = z(1+G)^5/(1+G-G^3-tG^2).
EXAMPLE
T(5,1)=15 because on the nodes A,B,C,D,E we have three connected noncrossing graphs having BCDE as the unique four-sided face: {AB,BC,CD,DE,EB}, {AE,BC,CD,DE,EB} and {AB,AE,BC,CD,DE,EB}; by circular permutations we obtain 5*3=15.
MAPLE
T:=proc(n, k) if n=1 and k=0 then 1 elif n=1 and k>0 then 0 else binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(4*n-4-k-i, n-2*k-2-3*i), i=0..floor((n-2*k-2)/3))/(n-1) fi end: seq(seq(T(n, k), k=0..floor(n/2)-1), n=2..15);
MATHEMATICA
T[n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n+k+i-2, i] Binomial[4n-4-k-i, n-2k-2-3i], {i, 0, (n-2k-2)/3}]/(n-1);
Table[T[n, k], {n, 2, 15}, {k, 0, n/2-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
CROSSREFS
Sequence in context: A158947 A000868 A000875 * A326603 A335697 A121006
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 31 2004
STATUS
approved