login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336184
a(n) = n^3 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^3.
1
1, 9, 53, 466, 5569, 82656, 1474045, 30664656, 729036801, 19499288680, 579487528861, 18943592776032, 675568129695601, 26099852672860344, 1085904530481561645, 48407032164910589056, 2301727955153266523521, 116286277045753464506568, 6220517619913795356269725
OFFSET
1,2
FORMULA
E.g.f.: -log(1 - exp(x) * x * (1 + 3*x + x^2)).
E.g.f.: -log(1 - Sum_{k>=1} k^3 * x^k / k!).
a(n) ~ (n-1)! / r^n, where r = 0.336491770414014560614859141224061461582454518... is the root of the equation exp(r)*r*(1 + 3*r + r^2) = 1. - Vaclav Kotesovec, Jul 11 2020
MATHEMATICA
a[n_] := a[n] = n^3 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^3, {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
nmax = 19; CoefficientList[Series[-Log[1 - Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 10 2020
STATUS
approved