login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336182
a(n) = Sum_{k=0..n} (-3)^k * binomial(n,k)^3.
3
1, -2, -14, 136, 106, -8492, 35344, 395008, -4547462, -4838372, 365951356, -1601617712, -19715085584, 233866581856, 285409397056, -20406741254144, 90043530872218, 1169513126877676, -13961261999882204, -18779832792734384, 1270510266589738636, -5584024444211882792
OFFSET
0,2
COMMENTS
Diagonal of the rational function 1 / (1 + y + z + x*y + y*z - 3*z*x - 2*x*y*z).
Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) + 3*x*y*z).
LINKS
FORMULA
From Robert Israel, Jul 12 2020: (Start)
a(n) = hypergeom([-n,-n,-n],[1,1],3).
(24*n^3 + 176*n^2 + 416*n + 320)*a(n + 1) + (279*n^3 + 2325*n^2 + 6382*n + 5776)*a(n + 2) + (18*n^3 + 168*n^2 + 514*n + 512)*a(n + 3) + (3*n^3 + 31*n^2 + 104*n + 112)*a(n + 4)=0. (End)
MAPLE
f:= gfun:-rectoproc({(24*n^3 + 176*n^2 + 416*n + 320)*a(n + 1) + (279*n^3 + 2325*n^2 + 6382*n + 5776)*a(n + 2) + (18*n^3 + 168*n^2 + 514*n + 512)*a(n + 3) + (3*n^3 + 31*n^2 + 104*n + 112)*a(n + 4), a(0) = 1, a(1) = -2, a(2) = -14, a(3) = 136}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jul 12 2020
MATHEMATICA
a[n_] := Sum[(-3)^k * Binomial[n, k]^3, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Jul 11 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-3)^k*binomial(n, k)^3)}
CROSSREFS
Column k=3 of A336179.
Cf. A206180.
Sequence in context: A111424 A317356 A375507 * A224729 A355722 A303395
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 10 2020
STATUS
approved