The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336182 a(n) = Sum_{k=0..n} (-3)^k * binomial(n,k)^3. 3
 1, -2, -14, 136, 106, -8492, 35344, 395008, -4547462, -4838372, 365951356, -1601617712, -19715085584, 233866581856, 285409397056, -20406741254144, 90043530872218, 1169513126877676, -13961261999882204, -18779832792734384, 1270510266589738636, -5584024444211882792 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Diagonal of the rational function 1 / (1 + y + z + x*y + y*z - 3*z*x - 2*x*y*z). Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) + 3*x*y*z). LINKS Robert Israel, Table of n, a(n) for n = 0..1020 FORMULA From Robert Israel, Jul 12 2020: (Start) a(n) = hypergeom([-n,-n,-n],[1,1],3). (24*n^3 + 176*n^2 + 416*n + 320)*a(n + 1) + (279*n^3 + 2325*n^2 + 6382*n + 5776)*a(n + 2) + (18*n^3 + 168*n^2 + 514*n + 512)*a(n + 3) + (3*n^3 + 31*n^2 + 104*n + 112)*a(n + 4)=0. (End) MAPLE f:= gfun:-rectoproc({(24*n^3 + 176*n^2 + 416*n + 320)*a(n + 1) + (279*n^3 + 2325*n^2 + 6382*n + 5776)*a(n + 2) + (18*n^3 + 168*n^2 + 514*n + 512)*a(n + 3) + (3*n^3 + 31*n^2 + 104*n + 112)*a(n + 4), a(0) = 1, a(1) = -2, a(2) = -14, a(3) = 136}, a(n), remember): map(f, [\$0..30]); # Robert Israel, Jul 12 2020 MATHEMATICA a[n_] := Sum[(-3)^k * Binomial[n, k]^3, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Jul 11 2020 *) PROG (PARI) {a(n) = sum(k=0, n, (-3)^k*binomial(n, k)^3)} CROSSREFS Column k=3 of A336179. Cf. A206180. Sequence in context: A326886 A111424 A317356 * A224729 A355722 A303395 Adjacent sequences: A336179 A336180 A336181 * A336183 A336184 A336185 KEYWORD sign AUTHOR Seiichi Manyama, Jul 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 16:17 EDT 2024. Contains 375165 sequences. (Running on oeis4.)