OFFSET
1,1
COMMENTS
Also nonnegative integers y in the solutions to 15*x^2-6*y^2+21*x-12*y+6 = 0, the corresponding values of x being A251769.
LINKS
Colin Barker, Table of n, a(n) for n = 1..633
Index entries for linear recurrences with constant coefficients, signature (1,1442,-1442,-1,1).
FORMULA
a(n) = a(n-1)+1442*a(n-2)-1442*a(n-3)-a(n-4)+a(n-5).
G.f.: -9*x*(x^3+117*x^2+39*x+3) / ((x-1)*(x^2-38*x+1)*(x^2+38*x+1)).
EXAMPLE
27 is in the sequence because 27^2+28^2+29^2 = 729+784+841 = 2354 = 697+783+874 = H(17)+H(18)+H(19).
MATHEMATICA
LinearRecurrence[{1, 1442, -1442, -1, 1}, {27, 378, 40365, 546516, 58207743}, 20] (* Harvey P. Dale, Jan 28 2020 *)
PROG
(PARI) Vec(-9*x*(x^3+117*x^2+39*x+3)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 08 2014
STATUS
approved