OFFSET
0,2
COMMENTS
Number of standard tableaux of shape (n+1,n+1,1,1,1,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of increasing tableaux of shape (n+6,n+6) with largest entry 2n+7. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - Oliver Pechenik, May 02 2014
Number of noncrossing partitions of 2n+7 into n+1 blocks all of size at least 2. - Oliver Pechenik, May 02 2014
LINKS
D. Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257.
O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014.
O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, 125 (2014), 357-378.
R. P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
FORMULA
a(n) = binomial(n+5, 5)*binomial(2n+7, n)/(n+1).
G.f.: 3F2(4,6,9/2 ; 2,8 ; 4*x). - R. J. Mathar, Feb 09 2020
D-finite with recurrence n*(n+7)*(n+1)*a(n) -2*(n+5)*(n+3)*(2*n+7)*a(n-1)=0. - R. J. Mathar, Feb 09 2020
MATHEMATICA
Table[(Binomial[n+5, 5]Binomial[2n+7, n])/(n+1), {n, 0, 30}] (* Harvey P. Dale, Oct 16 2016 *)
PROG
(PARI) vector(30, n, n--; binomial(n+5, 5)*binomial(2*n+7, n)/(n+1)) \\ Michel Marcus, Jun 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Jun 18 2015
STATUS
approved