login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A099095
Riordan array (1,3+2x).
0
1, 0, 3, 0, 2, 9, 0, 0, 12, 27, 0, 0, 4, 54, 81, 0, 0, 0, 36, 216, 243, 0, 0, 0, 8, 216, 810, 729, 0, 0, 0, 0, 96, 1080, 2916, 2187, 0, 0, 0, 0, 16, 720, 4860, 10206, 6561, 0, 0, 0, 0, 0, 240, 4320, 20412, 34992, 19683, 0, 0, 0, 0, 0, 32, 2160, 22680, 81648, 118098, 59049, 0, 0
OFFSET
0,3
COMMENTS
Row sums are A007482. Diagonal sums are A053088. The Riordan array (1,s+tx) defines T(n,k)=binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).
FORMULA
Number triangle T(n, k)=binomial(k, n-k)3^k*(2/3)^(n-k); Columns have g.f. (3x+2x^2)^k.
EXAMPLE
Rows begin {1}, {0,3}, {0,2,9}, {0,0,12,27}, {0,0,4,54,81},...
CROSSREFS
Cf. A038220.
Sequence in context: A330646 A341905 A354905 * A061980 A059683 A030208
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 25 2004
STATUS
approved