login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099096
Riordan array (1,2-x).
0
1, 0, 2, 0, -1, 4, 0, 0, -4, 8, 0, 0, 1, -12, 16, 0, 0, 0, 6, -32, 32, 0, 0, 0, -1, 24, -80, 64, 0, 0, 0, 0, -8, 80, -192, 128, 0, 0, 0, 0, 1, -40, 240, -448, 256, 0, 0, 0, 0, 0, 10, -160, 672, -1024, 512, 0, 0, 0, 0, 0, -1, 60, -560, 1792, -2304, 1024, 0, 0, 0, 0, 0
OFFSET
0,3
COMMENTS
Row sums are n+1 = Sum_{k=0..n} binomial(k,n-k)*2^(2k-n)*(-1)^(n-k). Diagonal sums are (-1)^n*A008346(n). The Riordan array (1,s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, -1/2, 1/2, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
FORMULA
Number triangle T(n, k) = binomial(k, n-k)*2^k*(-1/2)^(n-k); columns have g.f. (2x-x^2)^k.
G.f. of column k of matrix power T^m = (1 - (1-x)^(2^m))^k for k >= 0, when including the leading zeros that appear above the diagonal. - Paul D. Hanna, Nov 15 2007
T(n,k) = 2*T(n-1,k-1) - T(n-2,k-1), with T(0,0)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 25 2013
G.f.: 1/(1-2*x*y+x^2*y). - R. J. Mathar, Aug 12 2015
EXAMPLE
Rows begin
1;
0, 2;
0, -1, 4;
0, 0, -4, 8;
0, 0, 1, -12, 16;
...
PROG
(PARI) /* Matrix power T^m formula: [T^m](n, k) = */ {T(n, k, m=1)=polcoeff((1 - (1-x +x*O(x^n))^(2^m) )^k, n)} \\ Paul D. Hanna, Nov 15 2007
CROSSREFS
Cf. A099089.
Sequence in context: A271584 A072737 A061290 * A099089 A121298 A372873
KEYWORD
sign,easy,tabl
AUTHOR
Paul Barry, Sep 25 2004
STATUS
approved