login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099093
Riordan array (1, 3+3x).
2
1, 0, 3, 0, 3, 9, 0, 0, 18, 27, 0, 0, 9, 81, 81, 0, 0, 0, 81, 324, 243, 0, 0, 0, 27, 486, 1215, 729, 0, 0, 0, 0, 324, 2430, 4374, 2187, 0, 0, 0, 0, 81, 2430, 10935, 15309, 6561, 0, 0, 0, 0, 0, 1215, 14580, 45927, 52488, 19683, 0, 0, 0, 0, 0, 243, 10935, 76545, 183708, 177147, 59049
OFFSET
0,3
COMMENTS
Row sums are A030195. Diagonal sums are A099094.
The Riordan array (1,s+tx) defines T(n,k) = binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
FORMULA
T(n,k) = binomial(k, n-k)*3^k. - corrected by Michel Marcus, Feb 21 2015
Columns have g.f. (3x+3x^3)^k.
T(n,k) = A026729(n,k)*3^k. - Philippe Deléham, Jul 29 2006
EXAMPLE
Rows begin:
1;
0, 3;
0, 3, 9;
0, 0, 18, 27;
0, 0, 9, 81, 81;
0, 0, 0, 81, 324, 243;
0, 0, 0, 27, 486, 1215, 729;
...
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", "); ); print(); ); } \\ Michel Marcus, Feb 21 2015
(Magma) [[Binomial(k, n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Feb 21 2015 /* as the triangle *)
CROSSREFS
Cf. A038221.
Sequence in context: A372339 A197270 A117940 * A137339 A230184 A132330
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 25 2004
STATUS
approved