login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230184
T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value 2-x(i,j)
13
0, 3, 0, 3, 9, 0, 9, 27, 33, 0, 15, 159, 231, 129, 0, 33, 825, 3411, 1971, 513, 0, 63, 4395, 44487, 73857, 16815, 2049, 0, 129, 23307, 596973, 2432241, 1603431, 143451, 8193, 0, 255, 123729, 7957785, 82359177, 133265847, 34825803, 1223799, 32769, 0, 513
OFFSET
1,2
COMMENTS
Table starts
.0.....3........3...........9.............15................33
.0.....9.......27.........159............825..............4395
.0....33......231........3411..........44487............596973
.0...129.....1971.......73857........2432241..........82359177
.0...513....16815.....1603431......133265847.......11393567289
.0..2049...143451....34825803.....7303192425.....1576417829097
.0..8193..1223799...756450105...400233701367...218117038953009
.0.32769.10440387.16430979183.21933865129257.30179260908320577
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-1) -4*a(n-2)
k=3: a(n) = 9*a(n-1) -4*a(n-2)
k=4: a(n) = 26*a(n-1) -97*a(n-2) +89*a(n-3) -18*a(n-4) +a(n-5)
k=5: [order 6] for n>8
k=6: [order 23] for n>24
k=7: [order 34] for n>37
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2)
n=2: a(n) = 4*a(n-1) +7*a(n-2) +a(n-3) -6*a(n-4) -5*a(n-5) for n>6
n=3: [order 21] for n>23
n=4: [order 93] for n>96
EXAMPLE
Some solutions for n=3 k=4
..2..0..1..1....0..2..1..1....2..0..0..1....0..2..2..0....1..1..2..2
..0..2..2..0....0..0..2..2....0..2..1..1....0..1..2..0....2..0..0..0
..0..2..1..1....1..1..0..2....1..1..0..2....1..2..0..2....0..2..2..0
CROSSREFS
Column 2 is A084508(n+1)
Row 1 is A062510(n-1)
Sequence in context: A117940 A099093 A137339 * A132330 A117078 A021333
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 11 2013
STATUS
approved