OFFSET
0,3
COMMENTS
Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
G.f.: 1/(1 - 3*y*x - y*x^2). - Philippe Deléham, Nov 21 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A006190(n+1), A135030(n+1), A181353(n+1) for x = 0,1,2,3 respectively. - Philippe Deléham, Nov 21 2011
EXAMPLE
Triangle begins:
1;
0, 3;
0, 1, 9;
0, 0, 6, 27;
0, 0, 1, 27, 81;
0, 0, 0, 9, 108, 243;
...
MATHEMATICA
Table[3^(2*k-n)*Binomial[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 19 2021 *)
PROG
(Sage) flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 25 2004
STATUS
approved