|
|
A181353
|
|
a(n) = 9*a(n-1) + 3*a(n-2); a(0) = 0, a(1) = 1.
|
|
3
|
|
|
0, 1, 9, 84, 783, 7299, 68040, 634257, 5912433, 55114668, 513769311, 4789267803, 44644718160, 416170266849, 3879466556121, 36163709805636, 337111787919087, 3142497220688691, 29293810349955480, 273071784811665393, 2545527494354854977, 23728962803628690972
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = ((9+sqrt(93))^n - (9-sqrt(93))^n)/(2^n*sqrt(93)). - Rolf Pleisch, May 14 2011
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(93)*x/2)/sqrt(93). - Stefano Spezia, Apr 06 2023
|
|
MATHEMATICA
|
Join[{a=0, b=1}, Table[c=9*b+3*a; a=b; b=c, {n, 60}]]
LinearRecurrence[{9, 3}, {0, 1}, 30] (* G. C. Greubel, Jan 24 2018 *)
|
|
PROG
|
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-9*x-3*x^2))) \\ G. C. Greubel, Jan 24 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) + 3*Self(n-2): n in [1..30]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|