login
A181355
a(3*n+1) = 4^(2^n), a(3*n+2) = 3^(2^n), a(3*n+3) = 4^(2^n) - 3^(2^n).
0
4, 3, 1, 16, 9, 7, 256, 81, 175, 65536, 6561, 58975, 4294967296, 43046721, 4251920575, 18446744073709551616, 1853020188851841, 18444891053520699775, 340282366920938463463374607431768211456, 3433683820292512484657849089281
OFFSET
1,1
COMMENTS
Previous name was: Consider pairs of fractions (x,y) starting (4,3) and updated via z:=1/(1/x+1/y), x->x-z, y->y-z. The sequence shows the triples (numerator(x), numerator(y), numerator(x)-numerator(y)) after each update.
FORMULA
a(3*n+1) = 4^(2^n), a(3*n+2) = 3^(2^n), a(3*n+3) = 4^(2^n) - 3^(2^n). - Philippe Deléham , Oct 29 2013
EXAMPLE
(x=4,y=3) is shown as the first triple (4,3,1) in the sequence. This generates z=12/7 which generates the new pair (x,y) = (16/7,9/7) shown as (16,9,7). - R. J. Mathar, Feb 09 2011
MAPLE
x := 4 ; y := 3 ;
for loo from 1 to 7 do printf("%d, %d, %d, ", numer(x), numer(y), numer(x)-numer(y)) ; z := 1/(1/x+1/y) ; x := x-z ; y := y-z ; end do: # R. J. Mathar, Feb 09 2011
CROSSREFS
Sequence in context: A308326 A098234 A193795 * A128320 A189507 A348436
KEYWORD
nonn,easy,less
AUTHOR
Jamel Ghanouchi, Jan 27 2011
EXTENSIONS
Corrected by Philippe Deléham, Oct 29 2013
New name using Philippe Deléham's formula, Joerg Arndt, Nov 14 2014
STATUS
approved