OFFSET
1,1
COMMENTS
Previous name was: Consider pairs of fractions (x,y) starting (4,3) and updated via z:=1/(1/x+1/y), x->x-z, y->y-z. The sequence shows the triples (numerator(x), numerator(y), numerator(x)-numerator(y)) after each update.
FORMULA
a(3*n+1) = 4^(2^n), a(3*n+2) = 3^(2^n), a(3*n+3) = 4^(2^n) - 3^(2^n). - Philippe Deléham , Oct 29 2013
EXAMPLE
(x=4,y=3) is shown as the first triple (4,3,1) in the sequence. This generates z=12/7 which generates the new pair (x,y) = (16/7,9/7) shown as (16,9,7). - R. J. Mathar, Feb 09 2011
MAPLE
x := 4 ; y := 3 ;
for loo from 1 to 7 do printf("%d, %d, %d, ", numer(x), numer(y), numer(x)-numer(y)) ; z := 1/(1/x+1/y) ; x := x-z ; y := y-z ; end do: # R. J. Mathar, Feb 09 2011
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Jamel Ghanouchi, Jan 27 2011
EXTENSIONS
Corrected by Philippe Deléham, Oct 29 2013
New name using Philippe Deléham's formula, Joerg Arndt, Nov 14 2014
STATUS
approved