|
|
A272582
|
|
The number of strongly connected digraphs with n vertices and n+1 edges.
|
|
1
|
|
|
0, 9, 84, 720, 6480, 63000, 665280, 7620480, 94348800, 1257379200, 17962560000, 273988915200, 4446092851200, 76498950528000, 1391365527552000, 26676557107200000, 537799391281152000, 11373816888225792000, 251805357846282240000, 5824367407574876160000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
Wright also gives the number of strongly connected digraphs with n vertices and n+2 edges, 0, 6, 316, 6440, 107850, 1719060, 27476400, ... (offset 2) in terms of a polynomial of order 5 multiplied by n!. - R. J. Mathar, May 12 2016
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n-2)*(n+3)*n!/4.
D-finite with recurrence -(n+1)*(n-4)*a(n) +(n-1)*(n-3)*(n+2)*a(n-1)=0. - R. J. Mathar, Mar 11 2021
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
from __future__ import print_function
from sympy import factorial
for n in range(2, 500):
print((int)((n-2)*(n+3)*factorial(n)/4), end=", ")
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|