The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272582 The number of strongly connected digraphs with n vertices and n+1 edges. 0
 0, 9, 84, 720, 6480, 63000, 665280, 7620480, 94348800, 1257379200, 17962560000, 273988915200, 4446092851200, 76498950528000, 1391365527552000, 26676557107200000, 537799391281152000, 11373816888225792000, 251805357846282240000, 5824367407574876160000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Wright also gives the number of strongly connected digraphs with n vertices and n+2 edges, 0, 6, 316, 6440, 107850, 1719060, 27476400, ... (offset 2) in terms of a polynomial of order 5 multiplied by n!. - R. J. Mathar, May 12 2016 LINKS E. M. Wright, Formulae for the number of sparsely-edged strong labelled digraphs, Quart. J. Math. 28 (3) (1977) 363-367, Section 3. FORMULA a(n) = (n-2)*(n+3)*n!/4. E.g.f.: x^3*(3 - 2*x)/(2*(1 - x)^3). - Ilya Gutkovskiy, May 10 2016 D-finite with recurrence -(n+1)*(n-4)*a(n) +(n-1)*(n-3)*(n+2)*a(n-1)=0. - R. J. Mathar, Mar 11 2021 MATHEMATICA Table[(n-2)(n+3)n!/4, {n, 2, 30}] (* Harvey P. Dale, May 23 2017 *) PROG (Python) from __future__ import print_function from sympy import factorial for n in range(2, 500):    print((int)((n-2)*(n+3)*factorial(n)/4), end=", ") # Soumil Mandal, May 12 2016 CROSSREFS Sequence in context: A242596 A180807 A203455 * A037595 A037686 A181353 Adjacent sequences:  A272579 A272580 A272581 * A272583 A272584 A272585 KEYWORD nonn,easy AUTHOR R. J. Mathar, May 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 18:13 EDT 2021. Contains 347659 sequences. (Running on oeis4.)