OFFSET
0,3
LINKS
G. C. Greubel, Antidiagonals n = 0..50, flattened
FORMULA
A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022
EXAMPLE
Array begins as:
1, 0, 0, 0, 0, 0, 0, ...;
3, 2, 1, 0, 0, 0, 0, ...;
9, 8, 6, 4, 3, 3, 1, ...;
27, 26, 23, 20, 17, 17, 11, ...;
81, 80, 76, 72, 66, 66, 54, ...;
243, 242, 237, 232, 222, 222, 202, ...;
729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
1;
0, 3;
0, 2, 9;
0, 1, 8, 27;
0, 0, 6, 26, 81;
0, 0, 4, 23, 80, 243;
0, 0, 3, 20, 76, 242, 729;
0, 0, 3, 17, 72, 237, 728, 2187;
0, 0, 1, 17, 66, 232, 722, 2186, 6561;
MATHEMATICA
A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1, k] +A[n-1, Floor[k/2]] +A[n-1, Floor[k/3]]];
T[n_, k_]:= A[k, n-k];
Table[A[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
PROG
(SageMath)
@CachedFunction
def A(n, k):
if (n==0): return 0^k
else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
def T(n, k): return A(k, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022
CROSSREFS
Row sums are 6^n: A000400.
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 24 2001
STATUS
approved