login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172355
Triangle t(n,k) read by rows: generalized Padovan factorial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Padovan sequence with multiplier m=5.
1
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 6, 30, 6, 1, 1, 26, 156, 156, 26, 1, 1, 35, 910, 1092, 910, 35, 1, 1, 136, 4760, 24752, 24752, 4760, 136, 1, 1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1, 1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715
OFFSET
0,8
COMMENTS
Start from the generalized Padovan sequence f(n) = 0, 1, 1, 5, 6, 26, 35, 136, 201, 715, 1141, 3776,.. , f(n) = 5*f(n-2)+f(n-3), and its partial products c(n) = 1, 1, 1, 5, 30, 780, 27300, 3712800, 746272800, 533585052000.. Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 12, 44, 366, 2984, 59298, 1266972, 53712518, 2554657926,....
Note that rows n>= 14 contain fractions. - R. J. Mathar, Jul 05 2012
EXAMPLE
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 6, 30, 6, 1;
1, 26, 156, 156, 26, 1;
1, 35, 910, 1092, 910, 35, 1;
1, 136, 4760, 24752, 24752, 4760, 136, 1;
1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1;
1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715, 1;
1, 1141, 815815, 32795763, 743370628, 1000691230, 743370628, 32795763, 815815, 1141, 1;
MATHEMATICA
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1; f[2, a_] := 1;
f[n_, a_] := f[n, a] = a*f[n - 2, a] + f[n - 3, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
CROSSREFS
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Feb 01 2010
STATUS
approved