login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172352
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=7.
1
1, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 15, 120, 15, 1, 1, 71, 1065, 1065, 71, 1, 1, 176, 12496, 23430, 12496, 176, 1, 1, 673, 118448, 1051226, 1051226, 118448, 673, 1, 1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1, 1, 6616, 12603480
OFFSET
0,8
COMMENTS
Start from the generalized Fibonacci sequence A015442 and its partial products c(n) = 1, 1, 1, 8, 120, 8520, 1499520, 1009176960, 1922482108800... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 18, 152, 2274, 48776, 2340696, 192484504, 27026705688, 6379354108992,...
EXAMPLE
1;
1, 1;
1, 1, 1;
1, 8, 8, 1;
1, 15, 120, 15, 1;
1, 71, 1065, 1065, 71, 1;
1, 176, 12496, 23430, 12496, 176, 1;
1, 673, 118448, 1051226, 1051226, 118448, 673, 1;
1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1;
1, 6616, 12603480, 1060267755, 12440474992, 12440474992, 1060267755, 12603480, 6616, 1;
MATHEMATICA
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
CROSSREFS
CF. A010048 (m=1), A015109 (m=2), A172351 (m=6).
Sequence in context: A056194 A200304 A110940 * A141134 A176155 A174127
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved