Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jul 05 2012 15:21:53
%S 1,1,1,1,1,1,1,8,8,1,1,15,120,15,1,1,71,1065,1065,71,1,1,176,12496,
%T 23430,12496,176,1,1,673,118448,1051226,1051226,118448,673,1,1,1905,
%U 1282065,28205430,133505702,28205430,1282065,1905,1,1,6616,12603480
%N Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=7.
%C Start from the generalized Fibonacci sequence A015442 and its partial products c(n) = 1, 1, 1, 8, 120, 8520, 1499520, 1009176960, 1922482108800... Then t(n,k) = c(n)/(c(k)*c(n-k)).
%C Row sums are 1, 2, 3, 18, 152, 2274, 48776, 2340696, 192484504, 27026705688, 6379354108992,...
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 8, 8, 1;
%e 1, 15, 120, 15, 1;
%e 1, 71, 1065, 1065, 71, 1;
%e 1, 176, 12496, 23430, 12496, 176, 1;
%e 1, 673, 118448, 1051226, 1051226, 118448, 673, 1;
%e 1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1;
%e 1, 6616, 12603480, 1060267755, 12440474992, 12440474992, 1060267755, 12603480, 6616, 1;
%t Clear[f, c, a, t];
%t f[0, a_] := 0; f[1, a_] := 1;
%t f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
%t c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
%t t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
%t Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
%t Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
%Y CF. A010048 (m=1), A015109 (m=2), A172351 (m=6).
%K nonn,tabl
%O 0,8
%A _Roger L. Bagula_ and _Gary W. Adamson_, Feb 01 2010