|
|
A128082
|
|
A diagonal of the triangle A128080 of coefficients of q in the q-analog of the odd double factorials: a(n) = A128080(n+1,n).
|
|
6
|
|
|
1, 1, 3, 9, 31, 110, 400, 1477, 5516, 20775, 78762, 300179, 1148995, 4413877, 17007798, 65707390, 254430080, 987162527, 3836843836, 14936223511, 58226118626, 227271470103, 888117198666, 3474154716353, 13603246639501, 53310945927025, 209093495360796
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ c * 2^(2*n) / sqrt(n), where c = 0.236633772766964806372497000634617466975260409008748... - Vaclav Kotesovec, Feb 07 2023
|
|
EXAMPLE
|
a(n) is the n-th term in the q-analog of odd double factorial (2n+1)!!, in which the coefficients of q (triangle A128080) begin:
1;
(1);
1,(1),1;
1,2,(3),3,3,2,1;
1,3,6,(9),12,14,15,14,12,9,6,3,1;
1,4,10,19,(31),45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
The terms enclosed in parenthesis are initial terms of this sequence.
|
|
MAPLE
|
b:= proc(n) option remember; `if`(n=0, 1,
simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
end:
a:= n-> coeff(b(n+1), q, n):
|
|
MATHEMATICA
|
a[n_] := SeriesCoefficient[Product[(1-q^(2k-1))/(1-q), {k, 1, n+1}], {q, 0, n}];
|
|
PROG
|
(PARI) a(n)=if(n<1, 0, polcoeff(prod(k=1, n, (1-q^(2*k-1))/(1-q)), n-1, q))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|