The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008584 Molien series for Weyl group E_6. 4
 1, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 8, 6, 10, 9, 14, 11, 18, 15, 22, 20, 29, 25, 36, 32, 43, 41, 54, 49, 66, 61, 78, 75, 95, 89, 113, 107, 132, 129, 157, 150, 184, 178, 212, 209, 248, 241, 287, 280, 327 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups. Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no.14. Springer Verlag, 1957, Table 10. L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 35). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 248 Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,1,1,-1,0,1,-1,-2,1,0,-3,0,2,-1,-1,3,1,-2,1,3,-1,-1,2,0,-3,0,1,-2,-1,1,0,-1,1,1,0,0,1,0,-1). FORMULA G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)). a(n) ~ 1/6220800*n^5 + 1/414720*n^4. - Ralf Stephan, Apr 29 2014 MAPLE seq(coeff(series(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Jan 31 2020 MATHEMATICA CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)(1-x^8)(1-x^9)(1-x^12)), {x, 0, 55}], x] (* Harvey P. Dale, Aug 10 2011 *) PROG (Magma) MolienSeries(CoxeterGroup("E6")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) my(x='x+O('x^60)); Vec(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12))) \\ G. C. Greubel, Jan 31 2020 (Sage) def A008584_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)) ).list() A008584_list(60) # G. C. Greubel, Jan 31 2020 CROSSREFS Cf. A014977. Sequence in context: A115584 A058742 A029140 * A352833 A034390 A183912 Adjacent sequences: A008581 A008582 A008583 * A008585 A008586 A008587 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 10:23 EST 2022. Contains 358630 sequences. (Running on oeis4.)