The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008583 Molien series for Weyl group E_7. 3
 1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 55, 67, 80, 98, 117, 138, 165, 194, 226, 266, 309, 356, 413, 475, 542, 622, 708, 802, 911, 1029, 1157, 1304, 1462, 1633, 1827, 2036, 2261, 2514, 2785 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The relevant generating function 1/((1-z^2)*(1-z^6)*(1-z^8)*(1-z^10)*(1-z^12)*(1-z^14)*(1-z^18)) is reduced with z^2=x below to indicate that the intermediate zeros are not stored in this sequence. REFERENCES H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10. L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 36). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 250 Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 0, 2, 0, 1, 0, 0, -1, 0, -2, 0, -1, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, 1). FORMULA G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)). MAPLE A008583_list := proc(n) local G, j; G:= series(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)), x, n+1); [seq(coeff(G, x, j), j=0..n)]; end proc; # Robert Israel, Mar 26 2012 MATHEMATICA CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^9)), {x, 0, 50}], x] (* Harvey P. Dale, Mar 04 2013 *) PROG (Magma) MolienSeries(CoxeterGroup("E7")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) A008583_list(n)=Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9))+O(x^n)) /* returns n terms [a(0), ..., a(n-1)] */ \\ M. F. Hasler, Mar 26 2012 (Sage) def A008583_list(n) : R. = PowerSeriesRing(ZZ) G = 1/((1-t)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^9) + O(t^n)) return G.padded_list() # Peter Luschny, Mar 27 2012 CROSSREFS Cf. A005795. Sequence in context: A003107 A217123 A014977 * A053253 A095913 A102848 Adjacent sequences: A008580 A008581 A008582 * A008584 A008585 A008586 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 18:55 EST 2022. Contains 358475 sequences. (Running on oeis4.)