OFFSET
0,4
COMMENTS
The relevant generating function 1/((1-z^2)*(1-z^6)*(1-z^8)*(1-z^10)*(1-z^12)*(1-z^14)*(1-z^18)) is reduced with z^2=x below to indicate that the intermediate zeros are not stored in this sequence.
REFERENCES
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.
L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 36).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 250
Tengiz O. Gogoberidze, Baker's dozen digits of two sums involving reciprocal products of an integer and its greatest prime factor, arXiv:2407.12047 [math.GM], 2024. See p. 6.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 0, 2, 0, 1, 0, 0, -1, 0, -2, 0, -1, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, 1).
FORMULA
G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)).
MAPLE
A008583_list := proc(n) local G, j;
G:= series(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)), x, n+1);
[seq(coeff(G, x, j), j=0..n)];
end proc; # Robert Israel, Mar 26 2012
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^9)), {x, 0, 50}], x] (* Harvey P. Dale, Mar 04 2013 *)
PROG
(Magma) MolienSeries(CoxeterGroup("E7")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(PARI) A008583_list(n)=Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9))+O(x^n)) /* returns n terms [a(0), ..., a(n-1)] */ \\ M. F. Hasler, Mar 26 2012
(Sage)
def A008583_list(n) :
R.<t> = PowerSeriesRing(ZZ)
G = 1/((1-t)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^9) + O(t^n))
return G.padded_list() # Peter Luschny, Mar 27 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved