login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095913
Number of plasma partitions of 2n-1.
2
0, 0, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
OFFSET
1,4
LINKS
FORMULA
G.f.: sum(i>=1, x^(i+2)/prod(j=1..i, 1-x^(2*j-1))) . - Michael Somos, Aug 18 2006
G.f.: x^2*(1 - G(0) )/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
EXAMPLE
A plasma partition is a partition of n into 1 distinct odd part and an even number of odd parts and at least 2 parts of 1, so looking like plasma.
E.g. a(7) counts the plasma partitions of 13, has 11+1+1 = 9+1+1 = 7+1+1+1+1 = 5+1+1+1+1+1+1 = 5+3+3+1+1 = 3+1+1+1+1+1+1+1+1, so a(7)=6.
Graphically, these are;
.....*..........*........*......*.....*....*
***********.....*........*......*....***...*
.....*......*********....*......*...*****..*
................*.....*******...*....***...*
................*........*....*****...*....*
.........................*......*.........***
.........................*......*..........*
................................*..........*
................................*..........*
...........................................*
...........................................*
PROG
(PARI) {a(n)=local(A); if(n<3, 0, n-=2; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */
CROSSREFS
a(n)=A053253(n-3).
Sequence in context: A014977 A008583 A053253 * A376622 A102848 A260183
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 13 2004
STATUS
approved