OFFSET
1,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000
FORMULA
G.f.: sum(i>=1, x^(i+2)/prod(j=1..i, 1-x^(2*j-1))) . - Michael Somos, Aug 18 2006
G.f.: x^2*(1 - G(0) )/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
EXAMPLE
A plasma partition is a partition of n into 1 distinct odd part and an even number of odd parts and at least 2 parts of 1, so looking like plasma.
E.g. a(7) counts the plasma partitions of 13, has 11+1+1 = 9+1+1 = 7+1+1+1+1 = 5+1+1+1+1+1+1 = 5+3+3+1+1 = 3+1+1+1+1+1+1+1+1, so a(7)=6.
Graphically, these are;
.....*..........*........*......*.....*....*
***********.....*........*......*....***...*
.....*......*********....*......*...*****..*
................*.....*******...*....***...*
................*........*....*****...*....*
.........................*......*.........***
.........................*......*..........*
................................*..........*
................................*..........*
...........................................*
...........................................*
PROG
(PARI) {a(n)=local(A); if(n<3, 0, n-=2; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 13 2004
STATUS
approved