login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185225
Number of disconnected 2-regular simple graphs on n vertices with girth at least 5.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 49, 57, 69, 79, 94, 109, 128, 149, 175, 201, 235, 271, 316, 363, 422, 483, 559, 642, 739, 846, 974, 1111, 1276, 1455, 1665, 1896, 2167, 2463, 2808, 3188, 3626, 4111, 4672, 5286, 5994, 6777, 7670, 8661, 9790, 11036
OFFSET
0,13
COMMENTS
Number of partitions of n with smallest part >= 5 and at least 2 parts.
FORMULA
G.f.: -1/(1-q) + Sum_{n>=0} q^n/Product_{k=5..n} (1 - q^k). [Joerg Arndt, Jul 26 2011]
PROG
(PARI) N=66; q='q+O('q^N);
gf= -1/(1-q) + sum(n=0, N, q^n/prod(k=5, n, 1-q^k) ) /* = +q^10 +q^11 +2*q^12 +... */
v=Vec(gf+'a); v[1]=0; v /* Joerg Arndt, Jul 26 2011 */
(Magma) A185225 := func<n|n eq 0 select 0 else #RestrictedPartitions(n, {5..n-1})>;
CROSSREFS
Disconnected 2-regular simple graphs with girth at least g: A165652 (g=3), A185224 (g=4), this sequence (g=5), A185226 (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).
Sequence in context: A114096 A008582 A069911 * A027196 A325877 A100928
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Feb 22 2011
EXTENSIONS
More terms from Joerg Arndt, Jul 26 2011
STATUS
approved