login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109950 Number of partitions of n into parts having in decimal representation mutually no common digits. 5
1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 18, 23, 25, 29, 32, 39, 41, 49, 51, 57, 66, 71, 74, 82, 92, 92, 106, 105, 117, 123, 129, 132, 145, 153, 157, 173, 173, 187, 204, 214, 218, 250, 257, 266, 298, 301, 329, 359, 368, 370, 412, 433, 433, 478, 475, 508, 538, 526 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A109968(n) <= a(n) <= A000009(n);

A109951(n) = a(n+1) - a(n);

all partitions have no more than 9 parts.

a(n) <= A000009(n), a(n) < A000009(n) for n>10.

a(9876543210) = 1 and a(n) = 0 for n > 9876543210; problem: what is the smallest n such that a(n) = 0?. - Reinhard Zumkeller, Apr 11 2006

LINKS

Table of n, a(n) for n=1..61.

EXAMPLE

n=20: there are A000009(20)=64 partitions into distinct

parts,

the following 23 partitions contain parts with common digits:

19+1, 17+2+1, 16+3+1, 15+5, 15+4+1, 14+5+1, 14+4+2, 14+3+2+1,

13+6+1, 13+4+3, 13+4+2+1, 12+7+1, 12+6+2, 12+5+2+1, 12+4+3+1,

11+8+1, 11+6+2+1, 11+5+3+1, 10+9+1, 10+7+2+1, 10+6+3+1,

10+5+4+1 and 10+4+3+2+1, therefore a(20) = 64 - 23 = 41.

CROSSREFS

Sequence in context: A100928 A240671 A034140 * A008674 A067596 A114098

Adjacent sequences:  A109947 A109948 A109949 * A109951 A109952 A109953

KEYWORD

nonn,base

AUTHOR

Reinhard Zumkeller, Jul 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 22:06 EDT 2021. Contains 345053 sequences. (Running on oeis4.)