login
A114098
Number of partitions of n into parts that are distinct mod 9.
3
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 20, 25, 28, 32, 39, 46, 50, 62, 66, 78, 93, 101, 112, 132, 150, 161, 192, 202, 232, 268, 287, 312, 361, 400, 425, 497, 516, 582, 658, 698, 748, 858, 932, 982, 1135, 1164, 1296, 1443, 1519, 1610, 1845, 1968, 2059
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2500 (terms n = 1..700 from Fausto A. C. Cariboni)
EXAMPLE
a(7)=5 because there are 5 such partition of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
MATHEMATICA
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #, 9]& /@ Partitions[n], (Length@# != Length@Union@#)&]; lst = Array[np, 50]
CROSSREFS
Sequence in context: A109950 A008674 A067596 * A147706 A034141 A055002
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 06 2006
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 23 2021
STATUS
approved