Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0166 N0065 #40 Feb 07 2017 11:39:54
%S 0,2,1,4,2,5,4,7,8,5,2,7,10,1,10,8,2,7,4,13,1,14,8,14,11,7,14,13,16,8,
%T 11,16,17,7,2,19,4,17,19,11,1,14,5,10,22,16,4,23,20,8,23,13,10,5,16,
%U 22,20,19,25,4,11,22,25,8,26,13,1,28,28,26,23,29,28
%N Let p = A007645(n) be the n-th generalized cuban prime and write p = x^2 + 3*y^2; a(n) = x.
%D A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).
%H T. D. Noe, <a href="/A001479/b001479.txt">Table of n, a(n) for n = 1..1000</a>
%H A. J. C. Cunningham, <a href="/A002330/a002330.pdf">Quadratic Partitions</a>, Hodgson, London, 1904 [Annotated scans of selected pages]
%H S. R. Finch, <a href="http://arXiv.org/abs/math.NT/0701251">Powers of Euler's q-Series</a>, (arXiv:math.NT/0701251).
%H B. van der Pol and P. Speziali, <a href="/A001479/a001479.pdf">The primes in k(rho)</a> (annotated and scanned copy)
%t nmax = 56; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := x /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 0; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* _Jean-François Alcover_, Oct 19 2011 *)
%o (Haskell)
%o a001479 n = a000196 $ head $
%o filter ((== 1) . a010052) $ map (a007645 n -) $ tail a033428_list
%o -- _Reinhard Zumkeller_, Jul 11 2013
%o (PARI) do(lim)=my(v=List(), q=Qfb(1,0,3)); forprime(p=2,lim, if(p%3==2,next); listput(v, qfbsolve(q,p)[1])); Vec(v) \\ _Charles R Greathouse IV_, Feb 07 2017
%Y Cf. A001480, A007645, A000196, A010052, A033428.
%K nonn,easy,nice
%O 1,2
%A _N. J. A. Sloane_
%E Definition revised by _N. J. A. Sloane_, Jan 29 2013