The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000922 Primes p of the form 3k+1 such that -sqrt(p) < sum_{x=1..p} cos(2*Pi*x^3/p) < sqrt(p). (Formerly M4890 N2096) 3
 13, 19, 37, 61, 109, 157, 193, 241, 283, 367, 373, 379, 397, 487, 571, 613, 619, 733, 739, 859, 883, 907, 1009, 1033, 1051, 1129, 1153, 1201, 1291, 1297, 1303, 1399, 1429, 1453, 1459, 1489, 1549, 1669, 1699, 1753, 1783, 1831, 1861, 1933, 1951, 1987, 2011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES H. Hasse, Vorlesungen über Zahlentheorie. Springer-Verlag, NY, 1964, p. 482. G. B. Mathews, Theory of Numbers, 2nd edition. Chelsea, NY, p. 228. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 D. R. Heath-Brown, Kummer's Conjecture for Cubic Gauss Sums EXAMPLE 13 is here because the sum of cos(2*Pi*x^3/13) = 1.8217, between -sqrt(13) and +sqrt(13). CROSSREFS Cf. A000921, A000923, A002476. Sequence in context: A322923 A048523 A307627 * A107188 A029478 A252021 Adjacent sequences:  A000919 A000920 A000921 * A000923 A000924 A000925 KEYWORD nonn AUTHOR EXTENSIONS Edited by Don Reble, May 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)