The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000921 Primes p of the form 3k+1 such that Sum_{x=1..p} cos(2*Pi*x^3/p) >  sqrt(p). (Formerly M4398 N1854) 3
 7, 31, 43, 67, 73, 79, 103, 127, 163, 181, 223, 229, 271, 277, 307, 313, 337, 349, 409, 421, 439, 457, 463, 499, 523, 577, 643, 661, 673, 691, 709, 727, 757, 769, 811, 823, 829, 853, 877, 919, 967, 991, 997, 1021, 1069, 1087, 1093, 1117, 1123, 1171, 1213 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For the first 1000 terms in this sequence (primes up to 44683), the minimum difference between sqrt(p) and the sum is 1.47633.... Hence there does not seem to be a need to compute the sum to high precision. - T. D. Noe, Jun 20 2012 REFERENCES H. Hasse, Vorlesungen über Zahlentheorie. Springer-Verlag, NY, 1964, p. 482. G. B. Mathews, Theory of Numbers, 2nd edition. Chelsea, NY, p. 228. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 D. R. Heath-Brown, Kummer's Conjecture for Cubic Gauss Sums J. von Neumann and H. H. Goldstine, A numerical study of a conjecture of Kummer, Math. Comp., 7 (1953), 133-134. J. von Neumann and H. H. Goldstine, A numerical study of a conjecture of Kummer, Math. Comp., 7 (1953), 133-134. [Annotated scanned copy] EXAMPLE 7 is here because the sum of cos(2*Pi*x^3/7) = 4.7409 > sqrt(7). PROG (PARI) isok(p) = isprime(p) && ((p % 3) == 1) && (sum(x=1, p, cos(2*Pi*x^3/p)) > sqrt(p)); \\ Michel Marcus, Oct 16 2017 CROSSREFS Cf. A000922, A000923, A002476. Sequence in context: A000696 A171733 A128028 * A185004 A172490 A298039 Adjacent sequences:  A000918 A000919 A000920 * A000922 A000923 A000924 KEYWORD nonn AUTHOR EXTENSIONS Edited by Don Reble, May 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 15:15 EDT 2021. Contains 343773 sequences. (Running on oeis4.)