OFFSET
1,1
COMMENTS
For the first 1000 terms in this sequence (primes up to 44683), the minimum difference between sqrt(p) and the sum is 1.47633.... Hence there does not seem to be a need to compute the sum to high precision. - T. D. Noe, Jun 20 2012
REFERENCES
H. Hasse, Vorlesungen über Zahlentheorie. Springer-Verlag, NY, 1964, p. 482.
G. B. Mathews, Theory of Numbers, 2nd edition. Chelsea, NY, p. 228.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
D. R. Heath-Brown, Kummer's Conjecture for Cubic Gauss Sums
J. von Neumann and H. H. Goldstine, A numerical study of a conjecture of Kummer, Math. Comp., 7 (1953), 133-134.
J. von Neumann and H. H. Goldstine, A numerical study of a conjecture of Kummer, Math. Comp., 7 (1953), 133-134. [Annotated scanned copy]
EXAMPLE
7 is here because the sum of cos(2*Pi*x^3/7) = 4.7409 > sqrt(7).
MATHEMATICA
isok[p_] :=Mod[p, 3]==1 && PrimeQ[p] && Sum[Cos[2*Pi*x^3/p], {x, 1, p}] > Sqrt[p]; Select[Range[1213], isok] (* James C. McMahon, Dec 10 2023 *)
PROG
(PARI) isok(p) = isprime(p) && ((p % 3) == 1) && (sum(x=1, p, cos(2*Pi*x^3/p)) > sqrt(p)); \\ Michel Marcus, Oct 16 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Don Reble, May 26 2007
STATUS
approved