Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4398 N1854 #42 Dec 12 2023 08:22:45
%S 7,31,43,67,73,79,103,127,163,181,223,229,271,277,307,313,337,349,409,
%T 421,439,457,463,499,523,577,643,661,673,691,709,727,757,769,811,823,
%U 829,853,877,919,967,991,997,1021,1069,1087,1093,1117,1123,1171,1213
%N Primes p of the form 3k+1 such that Sum_{x=1..p} cos(2*Pi*x^3/p) > sqrt(p).
%C For the first 1000 terms in this sequence (primes up to 44683), the minimum difference between sqrt(p) and the sum is 1.47633.... Hence there does not seem to be a need to compute the sum to high precision. - _T. D. Noe_, Jun 20 2012
%D H. Hasse, Vorlesungen über Zahlentheorie. Springer-Verlag, NY, 1964, p. 482.
%D G. B. Mathews, Theory of Numbers, 2nd edition. Chelsea, NY, p. 228.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A000921/b000921.txt">Table of n, a(n) for n = 1..1000</a>
%H D. R. Heath-Brown, <a href="http://eprints.maths.ox.ac.uk/158/01/kummer.pdf">Kummer's Conjecture for Cubic Gauss Sums</a>
%H J. von Neumann and H. H. Goldstine, <a href="https://doi.org/10.1090/S0025-5718-1953-0055784-0">A numerical study of a conjecture of Kummer</a>, Math. Comp., 7 (1953), 133-134.
%H J. von Neumann and H. H. Goldstine, <a href="/A000921/a000921.pdf"> A numerical study of a conjecture of Kummer</a>, Math. Comp., 7 (1953), 133-134. [Annotated scanned copy]
%e 7 is here because the sum of cos(2*Pi*x^3/7) = 4.7409 > sqrt(7).
%t isok[p_] :=Mod[p, 3]==1 && PrimeQ[p] && Sum[Cos[2*Pi*x^3/p], {x, 1, p}] > Sqrt[p]; Select[Range[1213], isok] (* _James C. McMahon_, Dec 10 2023 *)
%o (PARI) isok(p) = isprime(p) && ((p % 3) == 1) && (sum(x=1, p, cos(2*Pi*x^3/p)) > sqrt(p)); \\ _Michel Marcus_, Oct 16 2017
%Y Cf. A000922, A000923, A002476.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E Edited by _Don Reble_, May 26 2007