login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255365
Expansion of phi(-x^3) * phi(-x^48) / chi(-x^16) in powers of x where phi(), chi() are Ramanujan theta functions.
1
1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 3, 0, 0, -2
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * eta(q^3)^2 * eta(q^32) * eta(q^48)^2 / (eta(q^6) * eta(q^16) * eta(q^96)) in powers of q.
Euler transform of a period 96 sequence.
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = a(16*n + 4) = a(16*n + 8) = 0.
a(3*n) = A002448(n). a(3*n + 32) = A227395(n).
EXAMPLE
G.f. = 1 - 2*x^3 + 2*x^12 + x^16 - 2*x^19 - 2*x^27 + 2*x^28 + x^32 + ...
G.f. = q^2 - 2*q^11 + 2*q^38 + q^50 - 2*q^59 - 2*q^83 + 2*q^86 + q^98 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^16, x^16] EllipticTheta[ 4, 0, x^3] EllipticTheta[ 3, 0, x^48], {x, 0, n}];
a[n_]:=SeriesCoefficient[EllipticTheta[3, 0, -x^3]*EllipticTheta[3, 0, -x^48 ]/QPochhammer[x^16, x^32], {x, 0, n}]; Table[a[n], {n, 0, 100}] (* G. C. Greubel, March 14 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^6 + A) * eta(x^16 + A) * eta(x^96 + A)), n))};
(PARI) {a(n) = my(A, p, e); if( n<0 || n%4==1, 0, n = 3*n+2; A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -(e==1), if( p==3, 0, if( p%8 < 4, e+1, 1-e%2))))))};
CROSSREFS
Sequence in context: A084863 A368072 A233441 * A256505 A337196 A073346
KEYWORD
sign
AUTHOR
Michael Somos, Feb 21 2015
STATUS
approved