OFFSET
2,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^32)^2 / (eta(q^2) * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: x^2 * Product_{k>0} (1 - x^k)^2 * (1 - x^(32*k))^2 / ((1 - x^(2*k)) * (1 - x^(16*k))).
a(n) = (-1)^n * A255258(n). - Michael Somos, Feb 20 2015
EXAMPLE
G.f. = q^2 - 2*q^3 + 2*q^6 - 2*q^11 + 3*q^18 - 2*q^19 + 2*q^22 - 4*q^27 + 2*q^34 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^8] / 2, {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^32 + A)^2 / (eta(x^2 + A) * eta(x^16 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 10 2013
STATUS
approved