OFFSET
0,3
COMMENTS
Starting from B(0)=1, the Bernoulli numbers B(n) with B(1)=1/2 are such that
1*B(0) = 1
-1*B(0) +2*B(1)= 0 --> B(1)=1/2
-2*B(0) +3*B(1) +3*B(2) = 0 --> B(2)=1/6
-3*B(0) +4*B(1) +6*B(2) +4*B(3) = 0 --> B(3)=0
-4*B(0) +5*B(1) +10*B(2) +10*B(3) +5*B(4) = 0 --> B(4)=-1/30 etc.
Row sum of A: A130103(n+1).
Row sum's absolute values of A: A145071(n).
FORMULA
T(n,k) = A074909(n,k) for n>0 and k>0, T(0,0)=1, T(n,0)=-n for n>0.
EXAMPLE
a(n) triangle is A:
1
-1 2
-2 3 3
-3 4 6 4
-4 5 10 10 5
-5 6 15 20 15 6
-6 7 21 35 35 21 7 etc.
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Sep 20 2013
STATUS
approved