Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 05 2013 04:44:44
%S 1,-1,2,-2,3,3,-3,4,6,4,-4,5,10,10,5,-5,6,15,20,15,6,-6,7,21,35,35,21,
%T 7,-7,8,28,56,70,56,28,8,-8,9,36,84,126,126,84,36,9,-9,10,45,120,210,
%U 252,210,120,45,10,-10
%N Triangle A074909(n) with the first column equal to 1 followed by -A000027(n) instead of A000012.
%C Triangle leading to A164555(n)/A027642(n).
%C Starting from B(0)=1, the Bernoulli numbers B(n) with B(1)=1/2 are such that
%C 1*B(0) = 1
%C -1*B(0) +2*B(1)= 0 --> B(1)=1/2
%C -2*B(0) +3*B(1) +3*B(2) = 0 --> B(2)=1/6
%C -3*B(0) +4*B(1) +6*B(2) +4*B(3) = 0 --> B(3)=0
%C -4*B(0) +5*B(1) +10*B(2) +10*B(3) +5*B(4) = 0 --> B(4)=-1/30 etc.
%C Row sum of A: A130103(n+1).
%C Row sum's absolute values of A: A145071(n).
%F T(n,k) = A074909(n,k) for n>0 and k>0, T(0,0)=1, T(n,0)=-n for n>0.
%e a(n) triangle is A:
%e 1
%e -1 2
%e -2 3 3
%e -3 4 6 4
%e -4 5 10 10 5
%e -5 6 15 20 15 6
%e -6 7 21 35 35 21 7 etc.
%K sign,tabl
%O 0,3
%A _Paul Curtz_, Sep 20 2013