login
A130103
Expansion of e.g.f. e^(2x)-(1+x)*e^x+x.
10
0, 1, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616
OFFSET
0,4
COMMENTS
a(n) = A130102(n+1)/2.
Partial sums are A130104.
Essentially the same as the Euler numbers A000295.
a(n) = Sum_{i=1..n} i*2^(n-i) - Ctibor O. Zizka, Feb 23 2008
LINKS
Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 18.
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
FORMULA
G.f.: x(1-3x+5x^2-2x^3)/((1-x)^2*(1-2x)).
E.g.f.: e^(2x)-(1+x)*e^x+x.
a(n) = 2^n-n-1+C(1,n)-C(0,n).
EXAMPLE
G.f. = x + x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + ...
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+n od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
Join[{0, 1}, LinearRecurrence[{4, -5, 2}, {1, 4, 11}, 40]] (* Harvey P. Dale, May 16 2014 *)
a[ n_] := If[ n < 2, Boole[n == 1], 2^n - (1 + n)]; (* Michael Somos, Aug 17 2015 *)
PROG
(PARI) {a(n) = if( n<2, n==1, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */
CROSSREFS
Cf. A000295.
Sequence in context: A030196 A248425 A356621 * A000295 A125128 A034334
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 07 2007
STATUS
approved