The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130103 Expansion of e.g.f. e^(2x)-(1+x)*e^x+x. 9
 0, 1, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) = A130102(n+1)/2. Partial sums are A130104. Essentially the same as the Euler numbers A000295. a(n) = Sum_{i=1..n} i*2^(n-i) - Ctibor O. Zizka, Feb 23 2008 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..3321 Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order" Index entries for linear recurrences with constant coefficients, signature (4,-5,2). FORMULA G.f.: x(1-3x+5x^2-2x^3)/((1-x)^2*(1-2x)). E.g.f.: e^(2x)-(1+x)*e^x+x. a(n) = 2^n-n-1+C(1,n)-C(0,n). EXAMPLE G.f. = x + x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + ... MAPLE a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+n od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008 MATHEMATICA Join[{0, 1}, LinearRecurrence[{4, -5, 2}, {1, 4, 11}, 40]] (* Harvey P. Dale, May 16 2014 *) a[ n_] := If[ n < 2, Boole[n == 1], 2^n - (1 + n)]; (* Michael Somos, Aug 17 2015 *) PROG (PARI) {a(n) = if( n<2, n==1, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */ CROSSREFS Cf. A000295. Sequence in context: A002940 A030196 A248425 * A000295 A125128 A034334 Adjacent sequences:  A130100 A130101 A130102 * A130104 A130105 A130106 KEYWORD easy,nonn AUTHOR Paul Barry, May 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 05:04 EDT 2020. Contains 333155 sequences. (Running on oeis4.)