login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130102
E.g.f.: (e^x - x)^2.
5
1, 0, 2, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072, 8166, 16356, 32738, 65504, 131038, 262108, 524250, 1048536, 2097110, 4194260, 8388562, 16777168, 33554382, 67108812, 134217674, 268435400, 536870854, 1073741764, 2147483586
OFFSET
0,3
COMMENTS
a(n) is the number of length n binary sequences in which no symbol occurs exactly once. (The Rosenthal formula takes 2^n for the total number of binary sequences and subtracts n for each sequence of length n with a single 0 or 1.) - Geoffrey Critzer, Dec 03 2011
From Ambrosio Valencia-Romero, Mar 08 2022: (Start)
a(n), for n > 1, is the number of pure Nash equilibria in the symmetric n-player two-strategy normal-form unanimity game. Let i be a player in set N = {1, 2, 3, ..., n} and s(i) in set S = {0, 1} be i's strategy. Then i's payoff, u(i), in this game is given by:
u(i) = 1 if s(1) = s(2) = ... = s(n-1) = s(n); otherwise, u(i) = 0.
Only two of the a(n) pure equilibria in this unanimity game are strict: s = <0, 0, ..., 0, 0> and s = <1, 1, ..., 1, 1>; these are the diagonal collective strategies where all actors obtain the payoff u(i) = 1.
The other a(n)-2 pure equilibria are weak and produce an individual payoff of u(i) = 0; these correspond to the collective strategy outcomes where more than one and fewer than n-1 individual strategies differ. For instance, for n = 4, the a(4)-2 = 6 weak pure equilibria are <0, 0, 1, 1>, <0, 1, 0, 1>, <0, 1, 1, 0>, <1, 0, 0, 1>, <1, 0, 1, 0>, and <1, 1, 0, 0>. (End)
FORMULA
a(n) = 2^n - 2*n for n <> 2 (cf. A005803). - Rainer Rosenthal, Feb 14 2010.
E.g.f.: e^(2*x) - 2*x*e^x + x^2.
a(n) = Sum_{k=0..n} binomial(n,k)*A060576(k)*A060576(n-k).
G.f. 1 + 2*x^2 - 2*x^3/((2*x - 1)*(x - 1)^2). - R. J. Mathar, Dec 04 2011
EXAMPLE
a(4) = 8 because there are 8 sequences on {0,1} such that neither 0 nor 1 occurs exactly once: {0,0,0,0}, {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}, {1,1,1,1}. - Geoffrey Critzer, Dec 03 2011
MATHEMATICA
a=Exp[x]-x; Range[0, 20]! CoefficientList[Series[a^2, {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
CoefficientList[Series[1+2*x^2-2*x^3/((2*x-1)*(x-1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 28 2012 *)
PROG
(Magma) I:=[1, 0, 2, 2, 8, 22]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
CROSSREFS
Sequence in context: A151377 A151407 A377243 * A151384 A300460 A377239
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 07 2007
STATUS
approved