login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A352990
Numbers k such that the k-th triangular number == 1 mod the integer log of k.
2
2, 6, 12, 21, 33, 45, 52, 63, 136, 162, 201, 205, 208, 225, 245, 253, 301, 304, 344, 441, 494, 531, 550, 637, 697, 720, 742, 806, 901, 910, 918, 1078, 1233, 1242, 1274, 1333, 1376, 1540, 1566, 1573, 1625, 1680, 1695, 1792, 1863, 1909, 2025, 2041, 2107, 2295, 2466, 2497, 2774, 2896, 2926, 2965
OFFSET
1,1
COMMENTS
Numbers k such that A000217(k) == 1 (mod A001414(k)).
LINKS
EXAMPLE
a(3) = 12 = 2*2*3 is a term because 12*13/2 = 78 == 1 (mod 2+2+3 = 7).
MAPLE
filter:= proc(n) local t; (n*(n+1)/2) mod add(t[1]*t[2], t=ifactors(n)[2]) = 1 end proc:
select(filter, [$2..3000]);
MATHEMATICA
Select[Range[3000], Mod[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]] == 1 &] (* Amiram Eldar, Apr 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 13 2022
STATUS
approved