login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352992
Smallest positive integer whose cube ends with exactly n 7's.
2
1, 3, 53, 1753, 753, 60753, 660753, 9660753, 99660753, 899660753, 3899660753, 33899660753, 233899660753, 7233899660753, 97233899660753, 497233899660753, 1497233899660753, 31497233899660753, 631497233899660753, 9631497233899660753, 59631497233899660753, 559631497233899660753
OFFSET
0,2
COMMENTS
When A225401(k) = 0, i.e. k is a term of A353003, then a(k) > a(k+1); 1st example is for k = 3 with a(3) = 1753 > a(4) = 753; otherwise, a(n) < a(n+1).
When n <> k, a(n) coincides with the 'backward concatenation' of A225401(n-1) up to A225401(0), where A225401 is the 10-adic integer x such that x^3 = -7/9 (see table in Example section); when n= k, a(k) must be calculated directly with the definition.
Without "exactly" in the name, terms a'(n) should be: 1, 3, 53, 753, 753, 60753, 660753, ...
There are similar sequences when cubes end with 1, 3, 8 or 9; but there's no similar sequence for squares, because when a square ends in more than three identical digits, these digits are necessarily 0.
FORMULA
When n is not in A353003, a(n) = Sum_{k=0..n-1} A225401(k) * 10^k.
EXAMPLE
a(1) = 3 because 3^3 = 27;
a(2) = 53 because 53^2 = 148877;
a(3) = 1753 because 1753^3 = 5386984777;
a(4) = 753 because 753^2 = 426957777;
a(5) = 60753 because 60753^3 = 224234888577777.
Table with a(n) and A225401(n-1)
---------------------------------------------------------------------------
| | a(n) | a'(n) | A225401(n-1) | concatenation |
| n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) |
---------------------------------------------------------------------------
0 1 1
1 3 3 3 ...3
2 53 53 5 ...53
3 1753 753 7 ...753
4 753 753 0 ...0753
5 60753 60753 6 ...60753
6 660753 660753 6 ...660753
7 9660753 9660753 9 ...9660753
..........................................................................
Also, as A225401(23) = 0, we have from a(21) up to a(25):
a(21) = 559631497233899660753;
a(22) = 3559631497233899660753;
a(23) = 193559631497233899660753, found by Marius A. Burtea;
a(24) = 93559631497233899660753;
a(25) = 2093559631497233899660753.
PROG
(Python)
def a(n):
k, s, target = 1, "1", "7"*n
while s.rstrip("7") + target != s: k += 1; s = str(k**3)
return k
print([a(n) for n in range(8)]) # Michael S. Branicky, Apr 14 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Apr 14 2022
EXTENSIONS
a(8)-a(9) from Marius A. Burtea, Apr 14 2022
STATUS
approved